Rolling Bearing Fault Diagnosis based on Residual Neural Network
نویسندگان
چکیده
منابع مشابه
Neural-network-based motor rolling bearing fault diagnosis
Motor systems are very important in modern society. They convert almost 60% of the electricity produced in the U.S. into other forms of energy to provide power to other equipment. In the performance of all motor systems, bearings play an important role. Many problems arising in motor operations are linked to bearing faults. In many cases, the accuracy of the instruments and devices used to moni...
متن کاملWire Finishing Mill Rolling Bearing Fault Diagnosis Based on Feature Extraction and BP Neural Network
Rolling bearing is main part of rotary machine. It is frail section of rotary machine. Its running status affects entire mechanical equipment system performance directly. Vibration acceleration signals of the third finishing mill of Anshan Steel and Iron Group wire plant were collected in this paper. Fourier analysis, power spectrum analysis and wavelet transform were made on collected signals....
متن کاملFault Diagnosis of Rolling Bearing Based on Feature Extraction and Neural Network Algorithm
The rolling element bearing is a key part in many mechanical facilities and the diagnosis of its faults is very important in the field of predictive maintenance. Till date, the resonant demodulation technique (envelope analysis) has been widely exploited in practice. In complex machines, the vibration generated by a component is easily affected by the vibration of other components or is corrupt...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملImproved Wavelet Neural Network Based on Hybrid Genetic Algorithm Applicationin on Fault Diagnosis of Railway Rolling Bearing
The method of improved wavelet transform neural network based on hybrid GA(genetic algorithm) is presented to diagnose rolling bearings faults in this paper. Genetic Artificial Neural Networks(GA-ANN) overcomes BP neural network’s fault of slow convergence, long hours of training, and falling into the local minimum point. And First, the signal is processed through the wavelet deoising, Then, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers of Mechatronical Engineering
سال: 2020
ISSN: 2661-4073
DOI: 10.18282/fme.v2i4.1547